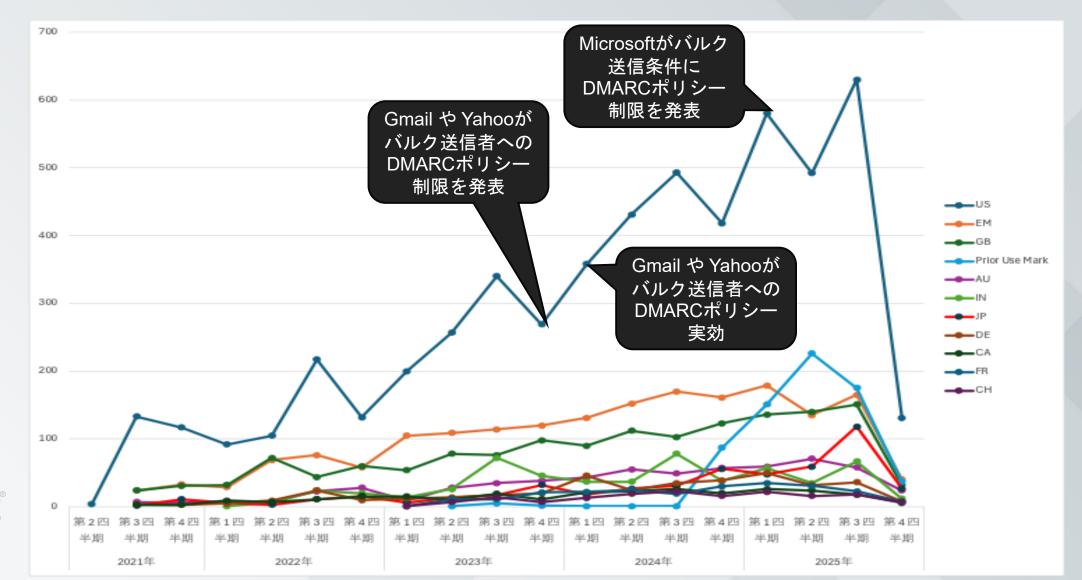
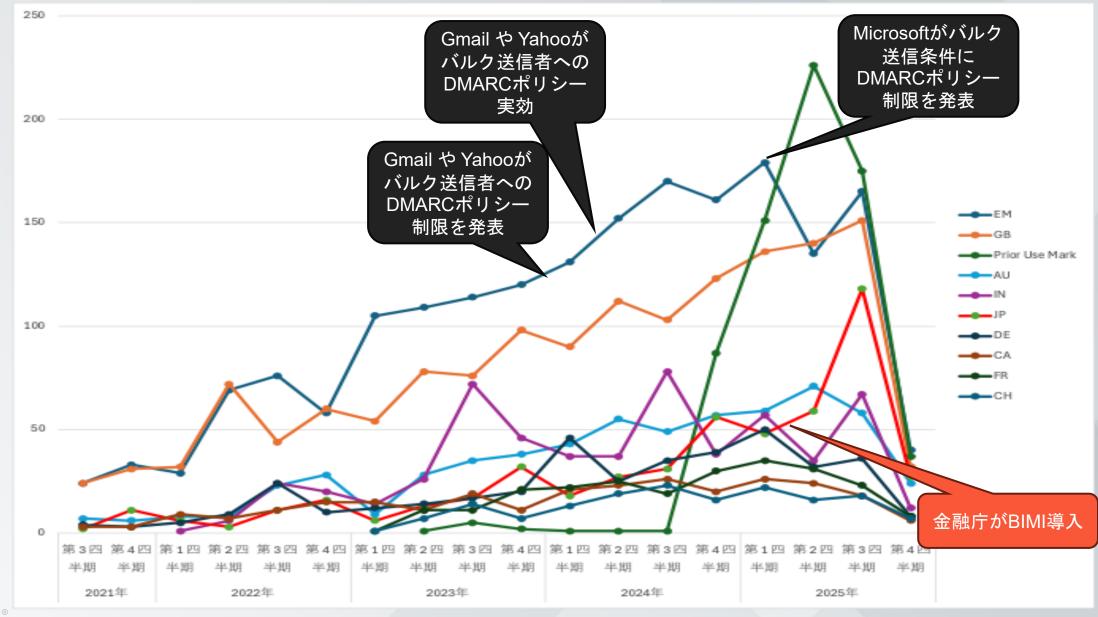
JPAAWG 8th General Meeting


- TwoFive から提供する幕の内弁当セッションマーケット分析とパブリック証明書関連の変更アップデート

DigiCert 林 正人 2025.11.4

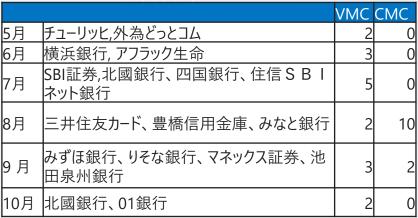
Agenda


- ✓CTLOGから見るマーク証明書
- ✓TLS証明書の有効期限47日に関して
- ✓マーク証明書、TLS証明書のDNSの利用トレンド

CT logデータから読むマーク証明書

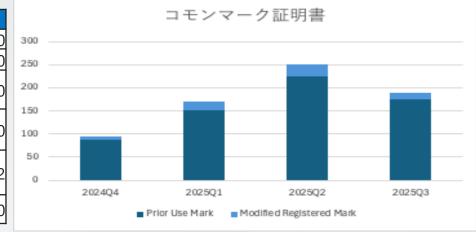
digicert

USを除外すると



成長要因

金融業界


- 金融庁の対応
- PriorUseによる 対応
- ・地方銀行への広

モンマーク証明書

- PriorUseMark
- ModifiedRegisteredMark

対消費者向け

- IT、小売が利用を牽引
- ヘルスケア、旅 行、ゴルフ、ス

+ - \ \ \ | - 天 | 田 大 \ \ |

組織別でマーク証明書を多く発行したのは?

申請組織	枚数
Conde Nast Holdings Limited	28
Rakuten Group, Inc.	15
株式会社エス・エム・エス	11
Halsted Financial Services, LLC	10
Lloyds Banking Group PLC Caleres, Inc	9

VOGUEGE WIRED NEW YÖRKER

Rakuten Rakuten Mobile

Tusker.

TLS証明書の有効期間が47日に短縮

現在 2025年 3月15日 2026年 3月15日 2027年 3月15日 2029年

証明書有効期限 398日

ドメイン/IPデータ期限 **398日**

組織情報再利用期限: 825日

最大有効期限:

200日

データ再利用期限:

200日

組織情報再利用期限:825日から398日に

最大有効期限:

100日

データ再利用期限:

100日

組織情報再利用期限:

398日

最大有効期限:

47日

データ再利用期限:

10日

組織情報再利用期限:

398日

なぜ有効期間を短くしようとするのか

ブラウザベンダーが指摘するパブリック証明書の課題

ブラウザ速度向上

CRLやOCSPなどの証明書失 効情報への参照トランザクションを減らす

セキュリティ向上

OCSP/CRL取得時の発IPによるプライバシーの漏洩

有効期間の 短縮化

- 常に新しい認証をもとに更新 を行うことで、CRL/OCSPを利 用しなくても安全な状態にする
- 現在の暗号が危殆化したとき の新技術の適用を高速化する

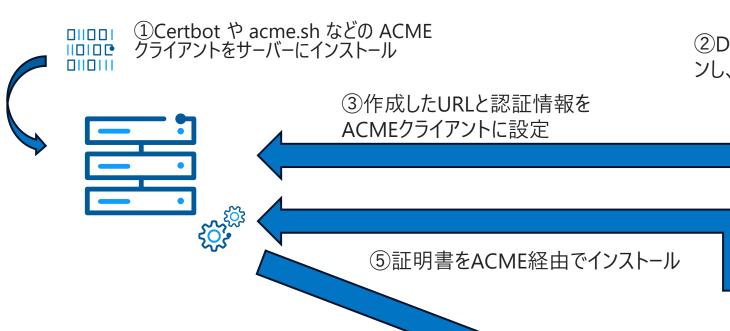
手動での更新の限界

(サーバ10台の場合)	年間更新(398日)	月間更新(47日)
更新頻度	年に1~10回	年に8回~120回
作業時間(@3h)	30h	~360h
作業コスト	人的コストは少ない	外注している場合、手数料が大きい
ヒューマンエラー耐性		×

作業内容(3時間):

- 関係者確認
- CSR作成
- 申請
- 認証対応
- DNS設定変更依頼
- インストール (サーバー、 ロードバランサー、その 他)

など



手作業が面倒だけど何とかなる・・・?

Excelで台帳管理だとミスも怖い

ACMEクライアントによる自動化

②DigiCert CertCentral にログインし、ACMEディレクトリURLを作成

digicert[®]
CertCentral

ACMEクライアントで証明書の 有効期限に応じて自動更新を設定 ④クライアントが証明書をリクエストし、 ドメイン所有権確認※を行い証明書を発行

顧客のペインポイント:現場からの洞察

- ドメイン利用権確認, 運用効率, 連携に対する主な課題
- 1. ドメイン利用権確認の課題
 - ドメイン名利用権の確認 (DCV) のための長くて手動のプロセス
 - DNSと証明書ワークフロー間の同期の問題

2.健全な運用

- 標準プロセスの欠如は非効率
- 古いDNSレコードや誤ったDNSレコードは脆弱性を生む

3.ヒューマンエラーと後始末

- うっかりや連絡ミスは、証明書の期限切れや検証の失敗
- 不適切に管理されたレコードの後始末には、多大な時間とリソース

4.他チームとの調整

- DNS、IT、セキュリティの各チーム間の連携が不十分なため、ボトルネック
- スムーズな承認と変更管理のためのServiceNowのようなツールとの統合に関する課題

Webサーバ証明書の流用はリスク

パブリックPKI

不特定多数がアクセスする公開Webサイトや SMTPサーバでの利用

プライベートPKI

特定ネットワーク内利用(社内ゼロトラスト、 BtoBネットワーク、業界用PKI、VPN、ATM、 など)

パブリック証明書の制約

Chrome Root Program Policyが目指すこと*

- 自動化手段提供の義務化
- ルート証明書の有効期限の短縮化
- 多目的ルート証明書の段階的廃止
- clientAuthの段階的除外
- ドメイン認証の強化
- リーフ証明書の有効期間短縮(90日、47日)
- 失効期限:24時間および5日間

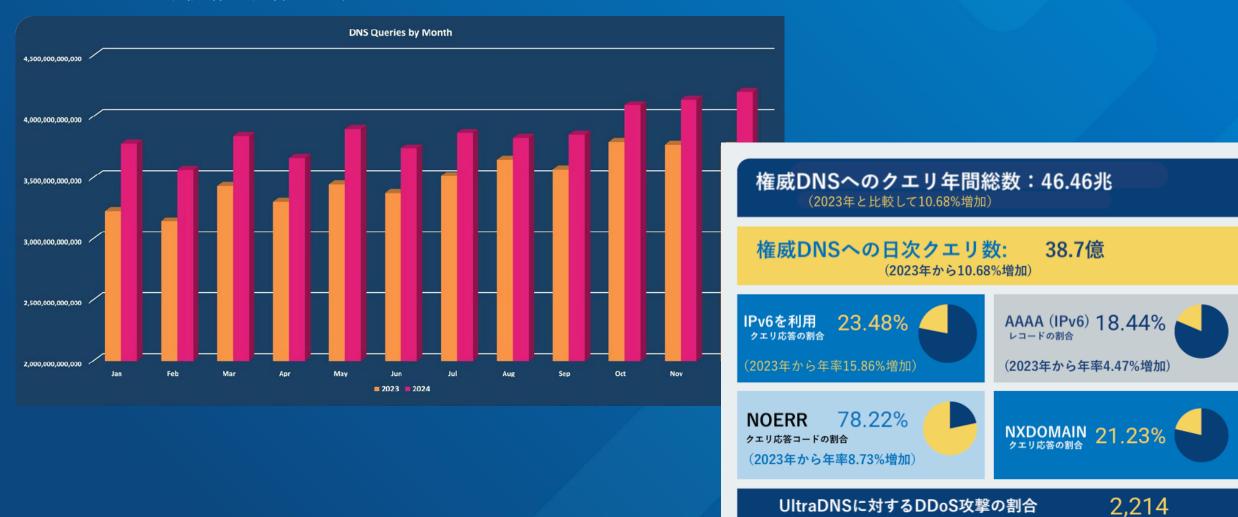
^{*} https://cabforum.org/2024/10/08/minutes-of-the-f2f-63-meeting-in-seattle-wa-usa-october-8-10-2024/6-chrome-root-program-update.pdf

DNSとPKIワークフローの統合

デジタルトラストを強化するため組織の壁を取り除く

業界の背景

ほとんどすべてのパブリック証明書でドメイン名利用権の確認(DCV)が必要


DNSは認証のためのほぼ 唯一の有効な選択肢

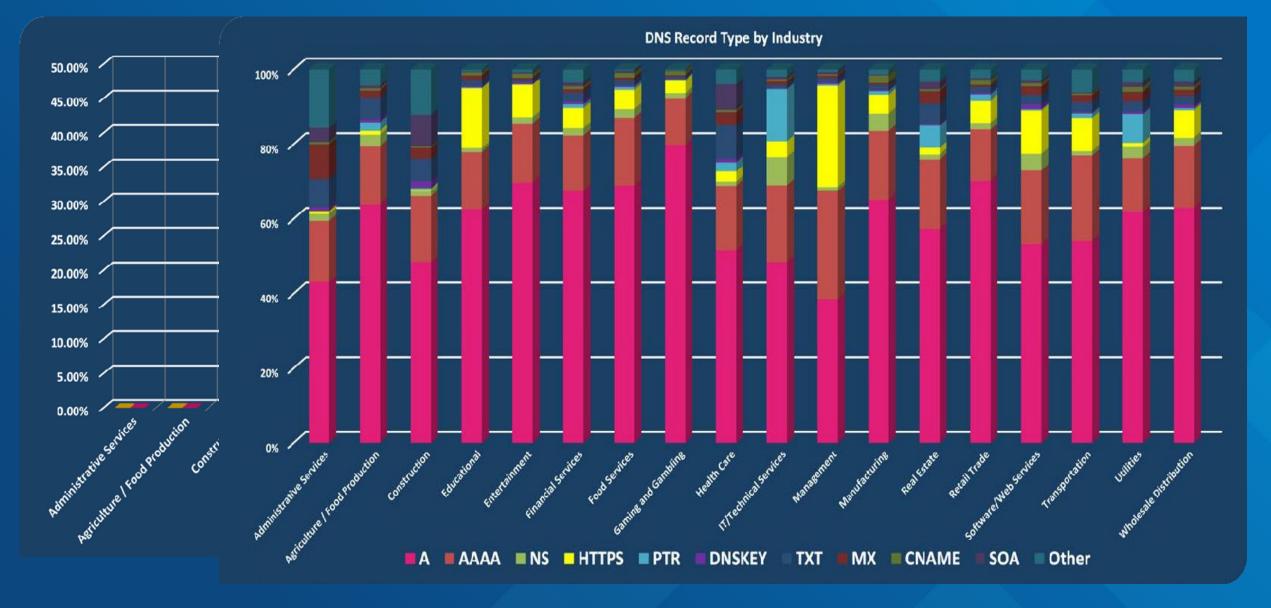
証明書の有効期間が短縮

DNSの現状


-この変化、複雑さ、増加に今後どう対応するか?

(2023年と比較して29.70%の増加)

増加するRecord types


- A Record
- AAAA for IPv6
- CNAME –or cloud service
- MX for Email Security
- -TXT for SPF, DKIM, DMARC, DCV....


Record	Count	Percent	% Change
Α	25,334,799,857,437	54,52%	▲ 8.90%
AAAA	8,572,100,391,456	18,45%	▲ 4.47%
NS	3,294,501,631,905	7.09%	▲ 45.57%
HTTPS	3,038,838,030,898	6,54%	▲ 61.31%
PTR	1,743,003,437,493	3.75%	▲ 18.57%
OTHER	1,150,347,403,826	2.48%	▼ -37.44%
TXT	931,909,792,233	2.01%	▲ 3.47%
MX	796,764,371,636	1.71%	▲ 7.98%
CNAME	469,009,003,196	1.01%	▲ 36.24%
DNSKEY	369,301,213,325	0.79%	▲ 17.70%
SOA	368,347,676,479	0.79%	▼ -2,96%
SRV	322,962,018,715	0.70%	▼ -1.33%
ANY	53,855,861,321	0.12%	▲ 59.16%
SPF	7,975,467,656	0.02%	▼ -20.16%
SVCB	6,523,806,932	0.01%	▲ 335,27%
NAPTR	1,623,376,595	0.00%	▼ -3.91%

Record	Count	Percent	% Change
HINFO	1,427,603,408	0.00%	▲ 80.36%
NSEC	959,666,117	0.00%	▲ 189.85%
A6	893,039,393	0.00%	▼ -14.37%
RRSIG	343,691,750	0.00%	▲ 189.30%
SSHFP	199,947,588	0.00%	▲ 11.33%
NSEC3	184,625,428	0.00%	▲ 17.82%
CERT	181,551,122	0.00%	▲ 31,63%
LOC	145,571,174	0.00%	▲ 16.90%
NSEC3PARA	84,538,580	0.00%	▼ -5,33%
DLV	62,232,039	0.00%	▼ -48.20%
IPSECKEY	58,248,251	0.00%	▲ 1197.04%
RP	19,723,900	0.00%	▼ -86,16%
TA	4,499,276	0.00%	▲ 131.12%
TSIG	4,487,027	0.00%	▲ 359,26%
TKEY	4,394,634	0.00%	▲ 475.58%
MF	4,307,358	0.00%	▲ 85,56%

業界動向

DDoS 攻擊

