Trusted Application LLM×静的テイント解析

日本大学 理工学部 吉永 達哉

自己紹介

• 名前: 吉永達哉

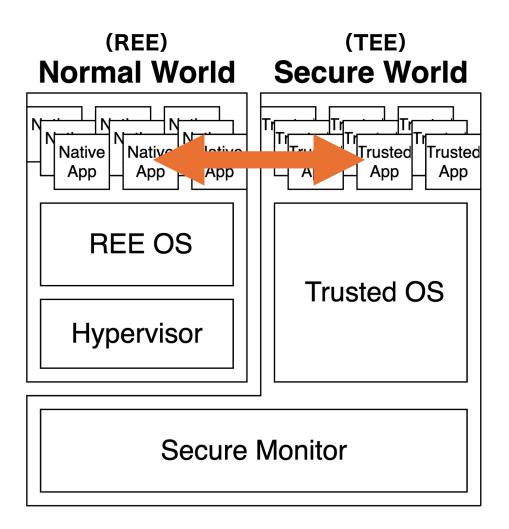
· 所属:日本大学 理工学部 (B4)

•興味:TEE, SBOM

・趣味:CTF, 競プロ

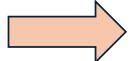
きっかけ

- Trusted Exaction Environment(TEE)に魅力
 - →コンピュータの「信頼性の基盤」で誤りが発生するのは致命的
- •LLMがどこまで理解?
 - →LLMの文脈力とTEEへの知識で脆弱性を検知できるか


そもそもTEEとは

暗号化などの"鍵"や処理を守る仕組み =TEE

CPU内にセキュア な実行環境を構築し 機密処理や 情報を保存する



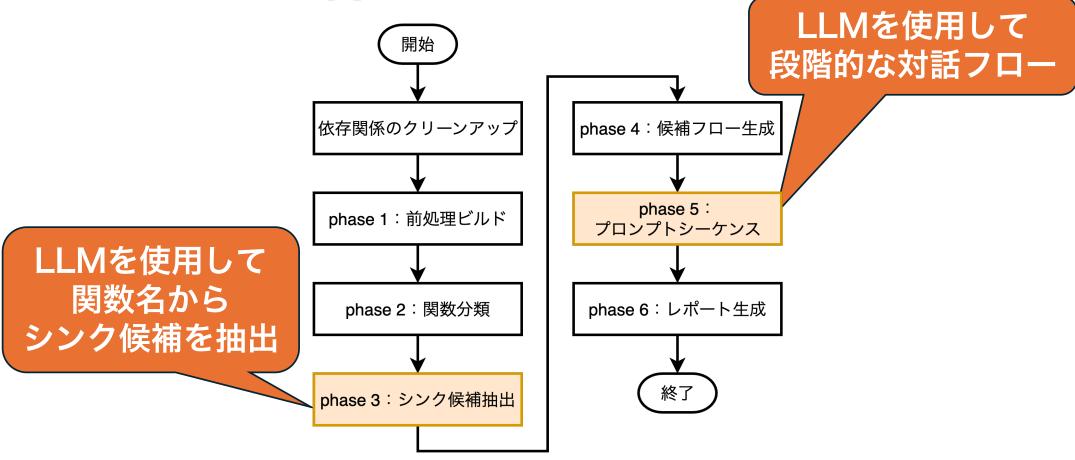
Native AppがTrusted Appに処理を依頼する

本発表で扱う3つのリスク[1]

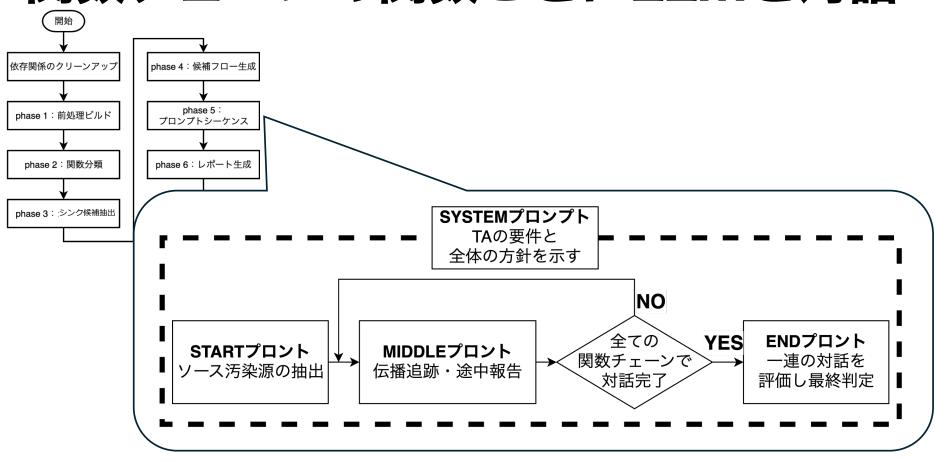
- ・未暗号化出力
- 入力検証不足
- ・共有メモリ完全性

- ・機密情報の漏洩
- ・バッファオーバーフロー
- TOCTOU

[1] Chengyan Ma et al: "DITING: A Static Analyzer for Identifying Bad Partitioning Issues in TEE Applications", arXiv, eprint={2502.15281}, 2025


問題を検出するために

既存のルールベースでは 文脈理解や複雑な処理への 検知が難しい



テイント解析にLLMを加える

関数チェーンの関数ごとにLLMと対話

実験: 既存ツール (DITING^[1]) と比較

GPT-5-mini ルールベース

	本システム	DITING
Detected	46	81
TP	34	55
FP	12	26
FN	41	20
Precision	0.739	0.679
Recall	0.453	0.733
F1	0.561	0.705

[1] Chengyan Ma et al: "DITING: A Static Analyzer for Identifying Bad Partitioning Issues in TEE Applications", arXiv, eprint={2502.15281}, 2025

LLMとルールベース比較

評価軸	LLM検知	ルール検知
① 定型パターン	△~○:過剰/過少に振れる	◎:機械的に強い・安定
② サニタイズ評価	△:見落としが 発生しやすい	△:静的パターン化が 難しい
③ドメイン文脈	◎:文脈理解で優位	△:細粒度ルールが膨張
④ 再現性	△:プロンプト・LLM依存	◎:安定・監査しやすい

結論:LLMでは文脈理解による検知が容易であった

今後の夢

- ・精度向上によるLLMへの置き換え
- ・TAバイナリへの適応によりAndroidファーム ウェアでの大規模調査

本システムのGitHub→

